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Abstract
A consistent framework has been put forward to quantize the isentropic,
compressible and inviscid fluid model in the Hamiltonian framework using
the Clebsch parametrization. The naive quantization is hampered by the non-
canonical (in particular, field dependent) Poisson bracket algebra. To overcome
this problem, the Batalin–Tyutin (1992 Int. J. Mod. Phys. A 6 3255) quantization
formalism is adopted in which the original system is converted to a local gauge
theory and is embedded in a canonical extended phase space. In a different
reduced phase-space scheme (Mitra P and Rajaraman R 1990 Ann. Phys., NY
203 157, Anishetty R and Vytheeswaran A S 1993 J. Phys. A: Math. Gen. 26
5613) also, the original model is converted to a gauge theory and subsequently
the two distinct gauge invariant formulations of the fluid model are related
explicitly. This strengthens the equivalence between the relativistic membrane
(where a gauge invariance is manifest) and the fluid (where the gauge symmetry
is hidden). Relativistic generalizations of the extended model are also touched
upon.

PACS numbers: 11.15.−q, 47.65.+a

1. Introduction

Extended objects, a generic example being d-branes [1], are receiving more and more
attention in high energy physics. The equivalence between membrane (d = 2-brane) and
planar fluid mechanics was revealed some years ago [2]. Subsequently, this connection
was established in arbitrary dimensions [3]. In fact, a specific fluid model, the Chaplygin
gas in (d, 1) spacetime, and the Poincare invariant Born–Infeld model in (d, 1) spacetime,
both bear a common ancestry to the reparametrization invariant Nambu–Goto d-brane theory
in (d + 1, 1) spacetime. These issues are discussed in [3, 4].

The concept of symmetry and, in particular, local gauge invariance has permeated through
present day theoretical physics. In fact, the gauge invariance (specifically the reparametrization
invariance) of the Nambu–Goto theory plays a key role in establishing the above mentioned
equivalence since a choice of light-cone gauge or parametrization in the Nambu–Goto action
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leads to the Chaplygin gas, whereas a Cartesian parametrization or a combination of the
light-cone gauge and a hodographic transformation (in which the independent and dependent
variables are interchanged) yields the Born–Infeld model [3]. These mappings clearly establish
the complete integrability of the d = 1 Chaplygin gas [5] and d = 1 Born–Infeld model [6]
since the parent Nambu–Goto 1-brane (string) moving in a 2-space (plane) is completely
integrable.

The Hamiltonian formulation of the inviscid fluid was initiated by the work of Landau
[7] who provided the Hamiltonian and the Poisson bracket (PB) algebra of the degrees of
freedom (density and velocity fields) comprising the fluid system. The discussion concerning
the Chaplygin gas model pertains to irrotational fluid. (Obviously there cannot be any
vorticity in one spatial dimension.) The Hamiltonian system for irrotational fluid (in any
dimension) becomes very simple, with the velocity field expressible as a gradient of a single
scalar degree of freedom (Clebsch variable [8]). However, it has been pointed out in [9] that
treated as a constraint system in the Dirac–Hamiltonian framework [10], the irrotational fluid
does not show the gauge invariance, which manifests itself as a U(1) phase invariance in
the relativistic membrane. A Batalin–Tyutin (BT) extended space analysis [11] of the above
model [12] restores the gauge invariance, albeit in the extended phase space. Subsequently, a
connection was established in [9] between the (extended space) gauge invariance [12] and a
gauge invariance in the physical sector [9]. The latter result exploits the reduced space scheme
discussed in [13]. In this sense, the gauge invariance is hidden [9] in the Hamiltonian fluid
model.

Let us now put our work in the proper perspective. We do not restrict ourselves to
irrotational fluid and instead concentrate on the the general case where the fluid can possess
vorticity as well. Essentially, in the next three sections, we have carried out a similar analysis
as that of [9, 12] for arbitrary fluid motion. There are qualitative changes since the velocity
becomes a non-linear combination of three Clebsch variables [14, 15]. This non-linearity
makes the BT [11] analysis and reduced space analysis [13] quite involved. Interestingly, we
have shown that in the general case of arbitrary fluid motion as well, there exists a mapping
between the gauge symmetries in the extended space approach [11] and reduced space scheme
[13]. However, the simple U(1) gauge group of the irrotational case is now replaced by the
symmetry group of orientation and area preserving diffeomorphism [16].

An earlier work in the context of quantization of fluid system with vortices is the classic
paper by Rasetti and Regge [17] where the fluid under consideration is incompressible, i.e., of
constant density. Since we are dealing with a compressible fluid, results equivalent to that of
[17] can be recovered by further constraining our system to a constant density one. We will
return to further comparisons between our formalism and that of [17] in section 3.

The study of the non-relativistic, isentropic, inviscid fluid has lately emerged as an area
of intense activity, principally due to its broad applicability. The solutions of the Galilleo
invariant system in d dimensions offer solutions for the (d + 1)-dimensional relativistic
membrane1. Also, the subject has identifications with the hydrodynamical description of
quantum mechanics [18], parton model [19], hydrodynamics of superfluids [20] and black
hole cosmology [21].

The paper is organized as follows: in section 2, we reproduce briefly the conventional
Hamiltonian fluid dynamics. Subtleties regarding the introduction of the Clebsch variables
are also mentioned. Sections 3 and 4 deal with the construction of a local gauge theory for the
fluid. Specifically, section 3 consists of the BT extension scheme and section 4 constitutes the
reduced space formalism. Relativistic generalizations of the above modified fluid models are
also touched upon. The paper ends with a conclusion in section 5.
1 See the papers by Bazeia and Jackiw in [4].
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2. Hamiltonian description of the fluid

Let us start by providing the conventional Hamiltonian formulation of fluid dynamics [3].
We will be considering inviscid, isentropic and compressible fluid in three space dimensions,
whose dynamics is governed by the continuity equation and Euler equation,

∂tρ + ∂i(ρvi) = 0 ∂tvi + (vj ∂j )vi = fi, (1)

where ρ and vi denote the density and velocity fields, respectively. We keep fi arbitrary for
the time being. The above equations of motion (1) are generated by

∂tρ(x) = {ρ(x),H } ∂tvi(x) = {vi(x),H } H [ρ, vi] =
∫

d3yH(y) (2)

using the following Hamiltonian and the (non-canonical) PB algebra [7]

H = 1

2
ρvivi + U {ρ(x), ρ(y)} = 0

(3)
{vi(x), ρ(y)} = ∂

∂xi
δ(x − y) {vi(x), vj (y)} = −∂ivj − ∂j vi

ρ
δ(x − y).

Note that we consider only those fi in (1) which can be generated by some U.
It is worth mentioning that generalizations of the {vi(x), vj (y)} PB in (3) have been

discussed in the literature [22], where ρ in the denominator is replaced by (ρ − C0), C0 being
a dynamical invariant of the system. Different limiting values for C0 lead to distinct regimes
of physical interest. The present system with C0 = 0 was derived before for superfluid in the
zero-temperature limit.

However, a canonical Lagrangian formulation of the above is lacking due to the presence
of the fluid helicity term,

C =
∫

d3x(εijkv
i∂jv

k)

which, being a Casimir of the theory, creates an obstruction in the inversion of the symplectic
matrix [3, 15]. To overcome this problem, albeit in the special case of helicityless flows,
Clebsch parametrization [8] of the velocity field vi and its associated PB algebra are introduced,

vi(x) ≡ ∂iθ(x) + α(x)∂iβ(x) (4)

{θ(x), α(y)} = −α

ρ
δ(x − y) {β(x), α(y)} = 1

ρ
δ(x − y)

(5)
{θ(x), ρ(y)} = δ(x − y).

These are the only nonzero PBs. This parametrization renders the helicity variable to a surface
term without any bulk contribution and obviously reproduces the previous equations of motion.
The Lagrangian providing the correct symplectic structure [3] and equations of motion is

L = θ̇ρ + β̇αρ − (
1
2ρvivi + U

)
. (6)

In our subsequent discussions, we will always use the Clebsch variables.
The non-canonical algebra posited in (3) or, equivalently, in (5), is field dependent and

hence not conducive for a quantization programme, since the basic Green functions (i.e., the
two-point functions or propagators) cannot be defined in a perturbative framework. This
motivates us to consider the gauge invariant formulation of the fluid.



10750 S Ghosh

3. Extended space (BT) quantization

We start by digressing a little on the constraint analysis of Dirac [10] in a Hamiltonian
framework. In this scheme, the constraints are termed as first class constraints (FCC) if they
commute (in the PB sense, modulo constraints) or second class constraints (SCC) if they
do not. The FCCs induce gauge invariance in the theory whereas the SCCs tend to modify
the symplectic structure of the phase space for compatibility with the SCCs. The above
modification induces a replacement of the PBs by Dirac brackets (DB) [10] as defined below,

{A(x), B(y)}DB = {A(x), B(y)} −
∫

(d3z d3w){A(x), ηα(z)}{ηα(z), ηβ(w)}−1{ηβ(w), B(y)}
(7)

where ηα(x) refer to the SCCs.
Primarily, we would like to construct a canonical phase space from which the non-

canonical PB algebra can be derived naturally as DBs [23]. This requires an embedding of the
original system in a larger phase space having independent and commuting canonical pairs,

(θ,	θ ≡ ρ) (α,	α) (β,	β) (8)

with {θ(x),	θ(y)} = δ(x − y), etc. Since we have introduced two extra variables in 	α and
	β , we also introduce two SCCs [23]

η1 ≡ α	θ − 	β η2 ≡ 	α. (9)

In the present case, the SCCs in (9) reproduce (5) as DBs from the above canonical set and
also keep the degrees of freedom count the same as the original one2.

However, in general, the DB formalism [10] can create problems in quantizing the theory
since the modified symplectic structure may become field dependent (if non-linear constraints
are present [25]), making it difficult for them to be elevated to quantum commutators via
the correspondence principle. With the non-linear constraints (9), precisely this situation is
encountered in the present case giving rise to field dependent DBs (5).

To overcome the above mentioned pathology, a systematic procedure has been formulated
by Batalin and Tyutin (BT) [11], whereby one enlarges the phase space and subsequently the
constraints as well as the Hamiltonian accordingly, so that the SCCs turn into FCCs in the
enlarged canonical phase space. Quantization of the resulting gauge theory is well understood.
Essentially one is trading the original system of physical degrees of freedom having a non-
canonical PB (or equivalently DB) structure and (possibly) a simple looking Hamiltonian
with an equivalent, extended model having canonical phase-space and (possibly) a more
complicated looking Hamiltonian. The obvious advantage of the latter over the former is that
the BT extended model lives in a canonical phase space and hence is suitable for perturbative
quantization. The relevant formulae regarding the BT extension for our purpose are listed
below.

Let us consider a generic set of constraints (
α,�l) and a Hamiltonian operator H with
the following PB relations:

{
α(q),
β(q)} ≈ �
µν

αβ (q) �= 0 {
α(q),�l(q)} ≈ 0
{�l(q),�n(q)} ≈ 0 {�l(q),H(q)} ≈ 0.

(10)

In the above equation, (q) collectively refers to the set of variables present prior to the BT
extension and ‘≈’ means that the equality holds on the constraint surface. Clearly 
α and �l

are SCC and FCC [10], respectively.
2 It should be pointed out that the non-canonical algebra (5) can be reproduced most economically by exploiting the
symplectic quantization formalism [3, 24]. However, we have pursued the Dirac scheme [10] here, keeping in mind
the subsequent quantization in the BT formalism [11].
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In systems with non-linear SCCs (such as the present one), in general the DBs can become
dynamical variable dependent [25] due to the {A,
α} and �αβ terms, leading to problems for
the quantization programme. To cure this type of pathology, the BT formalism is a systematic
framework where one introduces the BT variables φα

a , obeying

{φα, φβ} = ωαβ = −ωβα (11)

where ωαβ is a constant (or at most a c-number function) matrix, with the aim of modifying
the SCC 
α(q) to 
̃α(q, φα) such that,

{
̃α(q, φ), 
̃β(q, φ)} = 0 
̃α(q, φ) = 
α(q) +
∞∑

n=1


̃(n)
α (q, φ)

(12)

̃(n) ≈ O(φn).

This means that 
̃α are now FCCs and in particular Abelian [11]. The explicit terms in the
above expansion are [11],


̃(1)
α = Xαβφβ �αβ + Xαγ ωγδXβδ = 0 (13)


̃(n+1)
α = − 1

n + 2
φδωδγ XγβB

(n)
βα n � 1 (14)

B
(1)
βα = {


̃
(0)
β , 
̃(1)

α

}
(q)

− {

̃(0)

α , 
̃
u(1)
β

}
(q)

(15)

B
(n)
βα =

n∑
m=0

{

̃

(n−m)
β , 
̃(m)

α

}
(q,p)

+
n∑

m=0

{

̃

(n−m)
β , 
̃(m+2)

α

}
(φ)

n � 2. (16)

In the above, we have defined,

XαβXβγ = ωαβωβγ = δγ
α δ. (17)

A very useful idea is to introduce the improved function f̃ (q) [11] corresponding to each
f (q),

f̃ (q, φ) ≡ f (q̃) = f (q) +
∞∑

n=1

f̃ (q, φ)(n) f̃ (1) = −φβωβγ Xγδ{
δ, f }(q) (18)

f̃ (n+1) = − 1

n + 1
φβωβγ XγδG(f )

λ(n)
δ n � 1 (19)

G(f )
(n)
β =

n∑
m=0

{

̃

(n−m)
β , f̃ (m)

}
(q)

+
(n−2)∑
m=0

{

̃

(n−m)
β , f̃ (m+2)

}
(φ)

+
{

̃

(n+1)
β , f̃ (1)

}
(φ)

(20)

which have the property {
̃α(q, φ), f̃ (q, φ)} = 0. Thus the improved functions are FC or,
equivalently, gauge invariant. The subscripts (φ) and (q) in the PBs indicate the improved
variables with respect to which PBs are to be taken. It can be proved that extensions of the
original FCC �l and Hamiltonian H are simply

�̃l = �(q̃) H̃ = H(q̃). (21)

One can also re-express the converted SCCs as 
̃µ
α ≡ 
µ

α(q̃). The following identification
theorem holds:

{Ã, B̃} = ˜{A,B}DB {Ã, B̃}|φ=0 = {A,B}DB 0̃ = 0. (22)

Hence the outcome of the BT extension is the closed system of FCCs with the FC Hamiltonian
given below,{

̃µ

α , 
̃ν
β

} = {

̃µ

α , �̃l

} = {

̃µ

α , H̃
} = 0 {�̃l, �̃n} ≈ 0 {�̃l, H̃ } ≈ 0. (23)
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In general, due to the non-linearity in the SCCs, the extensions in the improved variables (and
subsequently in the FCCs and FC Hamiltonian) may turn out to be infinite series. This type
of situation has been encountered before [25]. Fortunately this complication does not surface
here. The are no FCCs in our system, (analogous to �l) and identifying the SCCs ηα in (9) in
the present case with 
α in (10), we compute the BT extended FCCs as,

η̃1 ≡ η1 + φ1 η̃2 ≡ η2 − 	θφ2 {η̃1, η̃2} = 0. (24)

The BT fields obey {φ1(x), φ2(y)} = δ(x − y). To ensure that there are no further constraints,
we need a Hamiltonian that commutes with the FCCs. The following variables:

θ̃ = θ + αφ2 	̃θ = 	θ α̃ = α +
φ1

	θ

	̃α = 	α − 	θφ2

β̃ = β − φ2 	̃β = 	β φ̃i = 0 (25)

are gauge invariant [11] in the sense that they commute with the FCCs. Hence all quantities
written in terms of the redefined variables are gauge invariant in the extended space. In
particular, the modified (free) Hamiltonian reads

H̃|free = 1

2
(	̃θ ṽi ṽi ) = 1

2
	θ

[
∂i(θ + αφ2) +

(
α +

φ1

	θ

)
∂i(β − φ2)

]2

. (26)

The remaining interaction terms in H, if present, will also be extended in a similar way. This
Hamiltonian (26) together with the FCCs (24) and the canonical phase-space is the gauge
invariant system we were looking for. This constitutes one of the major results of the paper.

It may be worthwhile at this point to comment on the apparently involved structure of
the extended Hamiltonian (26) with a dynamical variable residing in the denominator. As has
been emphasized in the introduction, this complexity is unavoidable. However, even then, this
extended system together with its canonical phase space is more suitable for quantization in a
perturbative framework. For example, for ‘small’ or ‘large’ 	θ , i.e., density, in some scale,
one can expand 	θ around a background or expand in terms of (1 −	θ) in the offending term
in (26).

It will be appropriate to make a comparison between [17] and our analysis. Essentially the
aim of Hamiltonian formulation of a dynamical system is to provide a Hamiltonian function
and a set of PBs which will reproduce (via the Hamilton equations of motion) a given set of
equations of motion of the system. Indeed, there are some consistency conditions for the PBs
(such as Jacobi identity etc). Now, the basic set of dynamical variables in [17] is different
from our set, although it is obvious that there exists a mapping between the two sets, once the
additional constraint of constant density is imposed on our model. But more importantly, it
should be noted that the basic quantum commutation relations in [17] are operator valued and
hence, perturbative computations will be difficult to perform. On the other hand, the present
system is embedded in the BT extended space which is completly canonical (i.e., not operator
valued) by construction and is thus amenable to conventional perturbative analysis. Because
of the introduction of auxiliary fields a standard BRST [26] quantization is to be performed,
which has not been carried through here.

To make contact with the physical system, another alternative is to reduce the dimension
of the BT extended phase space by additional gauge fixing constraints, (two in this case, η̃3

and η̃4, corresponding to two FCCs), with the only restriction that η̃a, a = 1, . . . , 4, constitute
an SCC system that is det |{η̃a, η̃b}| �= 0. A consistency check is to see that the original system
is recovered in the so-called unitary gauge, η̃3 ≡ φ1 ≈ 0, η̃4 ≡ φ2 ≈ 0. It is interesting to note
that in the extended space, the Hamiltonian or any other observable can, in general, depend
upon the Clebsch variables which are not expressible in terms of the velocity vi . However,



‘Gauging’ the fluid 10753

it should be remembered that they describe physically allowed systems since they are gauge
equivalent to the physical system.

It might be convenient (although not necessary) to consider the gauges of the form
η̃3 ≡ φ1 −F, η̃4 ≡ φ2 −G, to remove the BT fields directly. F and G can contain the physical
fields as well. For a particular gauge, one has to construct the corresponding DBs and compute
the equations of motion using the DBs in reduced phase-space, where the SCCs have been used
strongly. Once again, the degrees of freedom count agrees with the original one. Consider
the special class of gauge transformations: φ1 = 0, φ2 = constant. These will not change the
(vi, ρ) algebra. Hence they can be identified as the conventional canonical transformations.
Furthermore, additional constraints, such as incompressibility [23], can be included in this
set-up in the form ρ = constant, which under time persistence generates another constraint
∂iṽi . This SCC pair leads to [23].

The constants of motion for the free theory are obviously the energy H̃ , the momenta
P̃ i = ∫

(ρ∂iθ + 	α∂iα + 	β∂iβ + φ2∂iφ1), the angular momenta L̃ij = ∫
(riP̃j − rj P̃ i ) and

the boost generator B̃
i = tP̃ i − ∫

(riρ), effecting the transformation

{ṽi , uj B̃j } = −t (uj∂j )ṽi + ui {ρ, uj B̃j } = −t (uj∂j )ρ.

Obtaining the Lagrangian is indeed straightforward. The first order form is

L = 	θ θ̇ + 	αα̇ + 	ββ̇ + φ2φ̇1 − H̃ − λ1η̃1 − λ2η̃2

≡ 	θ θ̇ + φ2φ̇1 + β̇(α	θ + φ1) + α̇	θφ2 − H̃ − λ1η̃1 − λ2η̃2, (27)

where λ1 and λ2 are multiplier fields and some of the variables have been removed using the
equations of motion. The generic gauge transformation is defined as

δA =
{∫

(ε�),A

}
, (28)

where A, ε and � represent some operator, infinitesimal gauge transformation parameter and
an FCC, respectively. At this stage, one can check explicitly that (27) is invariant under the
following two independent sets of gauge transformations corresponding to the two FCCs,

η̃1 → δ1	θ = 0 δ1θ = −αψ1 δ1β = ψ1 δ1α = 0
δ1φ1 = 0 δ1φ2 = ψ1 η̃2 → δ2	θ = 0 δ2θ = φ2ψ2

δ2β = 0 δ2α = −ψ2 δ2φ1 = 	θψ2 δ2φ2 = 0
(29)

where ψ1 and ψ2 are gauge transformation parameter functions. Naively taking the unitary
gauge, i.e., φ1 = φ2 = 0, we can recover the Lagrangian posited in [3].

We now discuss briefly the relativistic generalization of the parent-free theory. In the
relativistic generalization of the free theory [3], the Lagrangian is expressed as

Lrel = jµaµ − (jµjµ)
1
2 aµ = ∂µθ + α∂µβ jµ = (ρ, ρvi ). (30)

Notice that the symplectic structure does not change from the non-relativistic one. Expansion
of the square root as

ρ(1 + vivi)
1
2 ≈ ρ

(
1 + 1

2 vivi + . . .
)

and dropping the uninteresting
∫
ρ term [3] (since it can only influence the time evolution of θ

by a constant translation), we can recover the non-relativistic Lagrangian in (6) with U = 0.
The Hamiltonian is now modified to

Hrel = ρ
[
vivi + (1 − vivi)

1
2
]

(31)
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which changes the equations of motion to the following:

α̇ = Li∂iα β̇ = Li∂iβ θ̇ = −Liα∂iβ +
[
vivi + (1 − vivi)

1
2
]

ρ̇ = ∂i(ρLi) Li = 1

ρ

∂Hrel

∂vi

= vi

[
2 − (1 − vivi)

− 1
2
]
. (32)

Notice that in the lowest order, Li ≈ vi + O(v3), the previous equations are recovered.
BT extension of the relativistic model is straightforward since the symplectic structure

remains unchanged from the non-relativistic one. One only has to replace the original variables
by their gauge invariant counterpart (25) in the covariant expressions (30) and (31).

We briefly remark on the canonical quantization of the BT extended fluid model. Indeed,
the BT extension has rendered the phase space canonical and the classical variables are simply
elevated to quantum operators, with the generic equal time commutators being,

[φ(x), πφ(y)] = ih̄δ(x − y).

The FCCs, (24) and (9), are taken into consideration by invoking the Dirac quantization
prescription [10], in which the physical states are defined as [27, 28]

|Ph State〉 ≡ δ(η̃1)δ(η̃2)|State〉 (33)

indicating that the physical states are annihilated by the FCCs. One can immedietly get some
idea of the qualitative nature of the (lowest order) quantum corrections involved, say, in the
energy spectrum, by sandwiching the extended space FC Hamiltonian operator (26) between
the physical states as defined above. Following [27, 28], we can resort to Weyl ordering the
quantum operator products and for simplicity let us exploit the unitary gauge. Naively it might
seem that there can appear non-trivial quantum corrections. However, it is straightforward
to check that the structure of the constraints in the unitary gauge and the derivative operators
involved (in the Hamiltonian) conspire to produce the quantum corrections in the form of
total derivatives only, which are assumed to vanish. Notice that in an apparantly similar
circumstance in [28], in the CP1 model with Hopf interaction, nonzero quantum corrections
appeared in the form of total derivatives in the topologically nontrivial sector only. No such
topological protection is present here.

4. Reduced space quantization

As mentioned in the introduction, we now discuss briefly the alternative scheme [13] of
inducing gauge invariance in a system subjected to SCCs only, without enlarging the phase
space, i.e., no BT fields are introduced. This prescription is particularly suitable for the special
case of only two SCCs, as is the case here (9). The primary idea is to consider (a suitably
modified form of) one of the SCCs as the only FCC and discard the other SCC, which may be
thought of as a particular gauge fixing condition one is free to ignore. There is a prescription
[13] by which gauge invariant counterparts of all the variables (and hence the Hamiltonian
and other relevant quantities as well) can be constructed. In fact, this formalism and the BT
extended scheme can be related in a formal way, at least for two SCCs [13], which however
will not be discussed here. For two generic SCCs Q1 and Q2, with {Q1,Q2} = � �= 0, the
SCC pair can be replaced by a single FCC χ = �−1Q1 with Q2 dropped. Obviously taking
Q2 instead of Q1 in χ is also a valid choice. It can be checked that for any degree of freedom
A, {χ, Ã} = 0, where Ã, defined below, is the gauge invariant counterpart of A,

Ã = A − Q2{χ,A} +
1

2!
Q2

2{χ, {χ,A}} − 1

3!
Q3

2{χ, {χ, {χ,A}}} + · · · . (34)
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In the present case, with the SCC system (9) the gauge invariant fluid models are

Case I

χ = 	α

	θ

θ̃ = θ + (α	θ − 	β)
	α

	2
θ

α̃ = 	β

	θ

. (35)

The gauge variation of the first order Lagrangian also vanishes,

δL =
{∫

d3x(λχ), (	θ θ̇ + 	αα̇ + 	ββ̇) − H̃

}
= λχ̇ ≈ 0.

Case II

χ = α − 	β

	θ

θ̃ = θ +
	α	β

	2
θ

β̃ = β − 	α

	θ

. (36)

The gauge variation of the first order Lagrangian again vanishes,

δL = λχ̇ ≈ 0.

Let us now make a direct contact between the gauge invariant theories formulated in the
BT extended scheme in section 3 and in the present section. Obviously, the former is the more
general one as it contains two FCCs, whereas the latter has a single FCC. Considering the
FCC of case I above in the reduced space scheme, the gauge transformations are

δα = − ε

	θ

δθ = ε
	α

	2
θ

. (37)

Now in the BT formulation, choose a gauge fixing condition as

G ≡ φ2 − 	α

	2
θ

. (38)

This gauge will render the pair (G, η̃1) second class while keeping the first-class nature of η̃2

intact. Presently, computing DBs with respect to the above SCC pair and using them to compute
the gauge variations, one finds that on the FCC surface η̃2 ≈ 0, the gauge transformations in
the BT and reduced schemes are identical. For a different gauge condition, the FCC in case II
above in the reduced scheme can also be matched to the BT results. This verification is the
analogue of [9] for a general fluid. This concludes our analysis of the quantization problem
of the Hamiltonian fluid model both from extended-space and reduced-space points of view.
The hidden gauge invariance of the fluid system has also been revealed in both the BT and
reduced schemes. Indeed, the above correspondence between the results obtained in the two
distinct methods is important as it connects the gauge invariance in the enlarged BT space to
the one in physical space.

5. Discussions

The Hamiltonian formulation of isentropic, inviscid fluid in three spatial dimensions has
been studied as a prelude to its quantization. The PB structure, yielding the fluid equations
of motion, is non-canonical (in particular field dependent). This creates problem for the
convenional quantization programme since the quantum commutators (via the correspondence
principle) will also aquire a field dependence and as a result even the propagators cannot
be defined properly.

This motivates us to exploit the BT quantization scheme [11] in which the constraints are
taken into account in a canonical extended phase-space. The system is also converted to a
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gauge theory. A second method, the reduced space scheme [13] is also applied to the fluid
model. Here also the fluid model is converted to a gauge theory but in contrast to the previous
framework [11], the phase-space extension is not required. This hidden gauge invariance
in the fluid model in the latter formulation has also been explicitly connected to the former
one. This hidden gauge symmetry actually corresponds to the gauge invariance present in the
equivalent relativistic membrane theory. This is a generalization of the work of [9, 12].

The presence of gauge invariance offers more freedom in the analysis of a theory and
apparently different models can be identified as gauge equivalent ones, so that results obtained
in one model can be carried to another one. For instance, one generally considers the fluid
system in a physical situation as being subjected to a pressure term

(
∂ip(x)

ρ

)
and a constant

force such as gravity. By a suitable choice of (translation symmetry breaking) gauge, one
can generate these terms in the Euler equation. However, even in the linear approximation,
there will be additional terms in the Euler equation besides the above ones and the continuity
equation will also be modified. One can say that this set is gauge equivalent to the free theory
since the latter is reproduced in the unitary gauge. Indeed, one can trade one type of interaction
and source with another one by exploiting the BT gauge equivalence and one set might be
better suited to simulate experimentally or analyse theoretically.

The BT construction is primarily aimed at providing a canonical framework for quantizing
the fluid system. It will indeed be interesting to study the quantized version of the above model
presented here in more detail.

Furthermore, gauge invariant interactions of the form εµνσλF
µνθ∂σα∂λβ can also be

introduced in the action which will alter the symplectic structure and the resulting theory can
be studied perturbatively.
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